Totally integrally closed rings and extremal spaces
نویسندگان
چکیده
منابع مشابه
Noetherian Spaces of Integrally Closed Rings with an Application to Intersections of Valuation Rings
Let H be an integral domain, and let Σ be a collection of integrally closed overrings of H. We show that if A is an overring of H such that H = ( T R∈Σ R)∩A, and if Σ is a Noetherian subspace of the space of all integrally closed overrings of H, then there exists a weakly Noetherian subspace Γ of integrally closed overrings of H such that H = ( T R∈Γ R) ∩ A, and no member of Γ can be omitted fr...
متن کاملChains of Integrally Closed Ideals
Let (A, m) be an excellent normal local ring with algebraically closed residue class field. Given integrally closed m-primary ideals I ⊃ J , we show that there is a composition series between I and J , by integrally closed ideals only. Also we show that any given integrally closed m-primary ideal I, the family of integrally closed ideals J ⊂ I, lA(I/J) = 1 forms an algebraic variety with dimens...
متن کاملIntegrally Closed Ideals in Two-dimensional Regular Local Rings Are Multiplier Ideals
Multiplier ideals in commutative rings are certain integrally closed ideals with properties that lend themselves to highly interesting applications. How special are they among integrally closed ideals in general? We show that in a two-dimensional regular local ring with algebraically closed residue field there is in fact no difference between “multiplier” and “integrally closed” (or “complete.”...
متن کاملIntegrally Closed Modules and their Divisors
There is a beautiful theory of integral closure of ideals in regular local rings of dimension two, due to Zariski, several aspects of which were later extended to modules. Our goal is to study integral closures of modules over normal domains by attaching divisors/determinantal ideals to them. They will be of two kinds: the ordinary Fitting ideal and its divisor, and another ‘determinantal’ idea...
متن کاملReal Closed Rings and Real Closed * Rings
Here we try to distinguish and compare different notions of real closedness mainly one developed by N. Schwartz in his Habilitationschrift and the other developed by A. Sankaran and K. Varadarajan in [SV] which we shall call real closed *. We stick to the definition of real closed rings as defined and characterized in [RCR] and we try to determine and characterize real closed rings that are rea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1970
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1970.32.767